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Abstract-In the past, the stability ofviscoelastic columns has been analysed by solving the integro­
differential equations of equilibrium under static or dynamic type disturbances. The solution of
these is usually difficult and the authors intend to provide an alternative formulation of variational
type. By using a convolution bilinear form, the operator governing the problem becomes symmetric
and a functional, which is stationary at the solution of classical equations, is obtained. This
formulation makes it possible both to use the classical approximation methods of the variation
calculus and to pose the problem on more natural functional spaces. Some applications show the
potential of the Ritz classical spectral method in the numerical solution and introduce the problem
ofcolumns subjected to variable load history.
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matrix components
linear operators
linear spaces
linear spaces
domain of a linear operator
functions of time variable t
trace operators
parameters for three element model
functional ~

functions of spatial variable x
length of the column
functions of spatial variable x and temporal variable t
series of orthonormal functions
range of a linear operator
time variables
function of the time variable
parameter for geometric imperfection description
spatial variable
reference axes
spatial domain (open, closed, boundary)
Boltzmann operator.

INTRODUCTION

The stability of a viscoelastic column subjected to axial loads is a problem of remarkable
technical interest which has been the object of many studies in the past. A judgement on
the stability of the system evolution under axial loads is usually formulated on the basis of
the features of the column motion caused by dynamic type (not homogeneous initial
conditions) or static type (geometric imperfections or lateral forces) disturbances. The
problem is usually posed in its Eulerianform by writing the integro-differential type equa­
tions of local equilibrium and the related initial and boundary conditions that define the
problem. In the past, the evolution of the system was analysed only with reference to simple
constraint and constant load. In particular, Dost and Glockner (1985) approached the
problem in the case of dynamic disturbances and Szyszkowski and Glockner (1985) in the
case of imperfections, reaching solutions in closed form that are useful for understanding
the physical question. These solutions were obtained by means of Laplace transforms.
Starting with the Euler approach, more general situations require numerical methods which
are very complex and laborious and the Laplace transform method does not permit dealing
with columns subjected to axial load varying in time.
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In this paper the so-called inverse problem of the calculus of variations has been dealt
with by seeking a functional which is stationary at the solution of the problem in its classical
formulation. In this way a double advantage is obtained. The first provides a more extensive
formulation to the problem because the functional requires a lower and more natural
regularity for the functions describing data and unknowns with respect to classical for­
mulation. The second advantage consists of the possibility of applying the numerical
methods usually used in weak formulations.

However the characterization of this functional is not a trivial matter and cannot be
obtained in the classical way because the operator ruling the problem is not symmetric with
respect to the classical bilinear form.

Historically the problems ruled by non-symmetric operators resisted variational for­
mulation for a long time and the first results are due to Gurtin (1963, 1964) and to Morse
and Feshbach (1953), with reference to particular problems. A clearer outlook on the
problem was finally obtained thanks to Tonti (1973) who focused the question on the
meaning of the operator symmetry and on the fact that this property depends on the
particular bilinear form used. This interpretation led to a number of generalizations as in
Reddy (1975). Especially interesting is the one proposed by Magri (1974), in which a
method for the variational formulation of every linear problem is presented, and the
generalization by Tonti himself (1984) in which a general method for non-linear problems
is proposed.

In this paper the authors investigate the possibility of obtaining a variational for­
mulation of the problem by means of the convolution bilinear form, with positive results.
This bilinear form was previously used for the classical linear dynamic viscoelastic problem,
Leitman (1966), however it must be noted that the effect of an axial force makes the
operator of the problem considered more complex and substantially different. This creates
some difficulty and the symmetry is preserved only if the axial action on the column in the
interval [0, T] is a time function symmetric around T12. In some cases of engineering
interest the previous condition is satisfied (constant actions). However this limitation can be
bypassed by considering a time interval which is twiclli as long. Consequently the case of
variable axial load can be treated avoiding the difficulties related to the Laplace transform
method. As previously mentioned, a variational formulation can be obtained by applying
Magri's method. This would lead to a fairly complex functional and this substantially
motivated the search for an alternative method.

In defining the functional, the authors tried to make the initial and boundary conditions
as general as possible. For this purpose it was necessary to use formal notation, together
with classical notation whenever this was useful.

In the past, variational methods were rarely applied to the numerical solution of
viscoelastic problems and the authors intend to underline the potentialities of these by
concluding with two applications of the classical Ritz spectral method. In the first appli­
cation, the results obtained numerically are compared with a known closed-form solution,
while the second application describes the behaviour of columns subjected to a variable
load history, finite in time.

THE COLUMN PROBLEM

The column represented in Fig. I is considered. Its length is L and its undisturbed
motion involves only an axial action p(x, t) and homogeneous initial conditions. The
disturbed motion of this column is analysed assuming that strain and displacements are
small. The X- Y plane is a symmetry plane, the shear strain is neglected and the cross­
sections remain plane after deformation. In the classical form, the problem is characterized
by the field equation

[ig ® u")" -[puT +mii = q on Q x (0, T), (1 a)

where Q denotes the spatial interval (0, L), the primes the spatial derivatives with respect
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Fig. I. Geometry of the problem.

to x, the dots those with respect to the time, ® the Boltzmann operatort ,
UE U ~ C 4,2(n x (0, nH the lateral displacements of the axes of the column,
q E V ~ CO,O(n x (0, n) a disturbance term due to geometric imperfections or to lateral
actions,} the moment ofinertia of the cross-section, 9 the relaxation function ofthe material,
p the axial action and m the mass per unit length. It is assumed that the functions p and 9
are defined on 0 x [0,1'], while} and m are constants in time, i.e. defined on n; furthermore
it is assumed that all these functions have the regularity required to give a sense to eqn (Sa).
In the following, the authors preferred to obtain the results by means offormal expressions.
Equation (Sa), in other words the Euler equation of the problem, can be formally written

A*GAu+B*PBu+C*MCu = q on nx (0, n, (1 b)

where A, B, C, A*, B*, C* denote the differential operators, P and M the operators that
map a function on to the same function multiplied respectively by p and m, and G is the
operator involving}, 9 and the Boltzmann operator defined in footnote t. The differential
operators A, A* and C, C* differ only because they act on different functional spaces.

The problem is completed by the boundary and initial conditions.
Generally, some of the conditions on the values that u and u' assume on the ends, are

assigned (Dirichlet conditions). The symbols Y. (a = 1,2) denote the operators, that connect
u with the value that the same function (Y1U = u) and its derivative (Y2U = u') assume at
the ends. The boundary conditions can be formally posed in the form

Y.u = d. on on. x [0, 1'], (2)

where on. denotes the set of end-points in which the conditions Y.u = d. are assigned.
Other Neumann type conditions on the values that the functions yfu = }g ® u" (bending

moment) and y~u = [jg ® u"]' -pu' (shear) assume at the ends are usually assigned. By
means of the criterion of the previous case, the following formal equation can be posed:

(3)

A total of four boundary conditions, some of the former and some of the latter types,

tThe Boltzmann operator is the linear operator characteristic of the viscoelastic constitutive law, as
introduced by Leitman and Fisher (1973). This is defined by the following equality:

get) ® u(t) = g(O)u(t) +g(1) *u(t) = g(O)u(t) +J: g(l -T)u(r) dT,

where get) E AC[O, 00) (Ae = absolutely continuous).
tThe form em'"(Q x (0, n) denotes the space of continuous functions defined on Q x (0, n for which both

the derivatives with respect to xEQ of order less than or equal to m and the derivatives with respect to time of
order less than or equal to n, are continuous.
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must be assigned. At least two conditions must be of the former type to avoid non­
uniqueness of the solution as a result of rigid motions.

Finally the problem is completed with the initial conditions (Cauchy conditions) that
assign the value of u and its time derivative uat the initial instant t = 0 :

Iou = Uo

nu= Uo
on nx t = O. (4)

VARIATIONAL FORMULATION

The linear problem considered has the form

Na=b, (5)

where N:D(N) - R(N), D(N) is a subset of a linear space A, and R(N) is dense in a
second linear space B. The operator N consists of an integro-differential operator, mapping
functions "a" into functions "b" defined on an open set 0 (formal part), and of boundary
conditions mapping functions "a" into functions defined on the boundary 00 (trace oper­
ators). The authors intend to deal with the so-called inverse problem of the calculus of
variations, by seeking a functional $'(a): D(N) - IR which is stationary at the solution of
problem (5), Le.

(6)

This is a classical topic of applied mathematics and a historical review can be found
in Tonti (1984). In the linear case the following result can be shown: if a form
(a, b) : A x B -+ IR is bilinear (i), non-degenerate (ii) (i.e. (a, b) = 0 Va E A ~ b = 0 and
(a, b) = 0 Vb E B ~ a = 0) and continuous (iii) and if the linear operator N is symmetric,
in the sense that it satisfies the condition

then the functional sought exists and possesses the following form :

$'(a) = Ij2(a,Na)-(a,b).

(7)

(8)

It is useful to note that the usual canonical bilinear form derived from the scalar
product is only one of the infinite forms that can be adopted and does not make the analysed
operator symmetric.

The formal part of the linear operators described in the rest of this paper are written
in the form N = T*ST. The symmetry of these can be proved by showing that T* is the
adjoint of T, i.e. (T*a, b) = (a, Tb) and by showing that S is symmetric.

In the problem considered, the presence of terms related to the axial force in the
differential equation (B*PB) and in some boundary conditions (-pu' in y~u), makes the
linear operator substantially different from the operator ruling the dynamic viscoelastic
problem, which involves only A*GA and C*MC (with correspondent boundary or initial
conditions) and admits a variational formulation by means of the convolution bilinear form
(Leitman, 1966; Tonti, 1973). The aim is to show if, and under which assumptions, the
convolution bilinear form makes it possible to obtain the required symmetry even in the
presence of the operatorB*PB and of the particular boundary conditions y!u = h 2•

The following bilinear forms are introduced:

-bilinear form between functions defined on 0 x (0, T)
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(u, v), = Lu* v dn = LL LT U(X, T -t)v(x, t) dt dx,

-bilinear form between functions defined on on. x [0, T]

(u,v)ll, = ±u*v = ± fo
T

u(T-t)v(t)dt,
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(9)

(10)

where the positive sign holds at x = L and the negative at x = 0; in a similar manner, the
bilinear form (u,v)Il' between functions defined on an:x [0, T], is defined;

-bilinear form between functions defined on n

(u, v)m = Luv dn =ru(x)v(x) dx. (II)

It is well known that the previous bilinear forms are non-degenerate between functional
spaces for the Titchmarsh's theorems (Yosida, 1980).

For the variational formulation, A*, B*, C* must be formal adjoints of A, B, C, and
G, P, M must be symmetric. The relation of formal adjoint between A *, C* and A, C with
respect to the bilinear form (u,v), is known from the variational formulation of the dynamic
viscoelastic problem; it can be shown that even B* = - a/ox is the formal adjoint of
B = a/ax. In fact, by integrating by parts

(12)

where the terms on the boundary disappear if the trace of u is null, as per the definition of
formal adjoint (Oden, 1979).

With respect to this bilinear form, the operators G and M are also symmetric. The
symmetry of M is trivial while the symmetry of G can be shown by means of a change in
the integral variables and by introducing the Heaviside function (Tonti, 1973).

For the variational formulation the operator P must also be symmetric. In general,
the convolution form does not permit obtaining this result because the following equations
hold:

(Pu\,uz) = rfaTp(X,T-t)U\(X, T-t)uz(x, t)dx dt,

(u], PUz) = faL faT p(x, t)u] (x, T - t)uz(x, t) dx dt.

(13a)

(13b)

An equivalence between the two terms is true for every pair u\> Uz only if
p(x, t) = p(x, T - t) in [0, T]. Taking into account that p(x, t) represents the axial action of
the undisturbed motion, it can be concluded that the required symmetry holds in many
practical problems in which p(x, t) is constant in time. However, in those cases in which
p(x, t) varies in the temporal interval [0, T], the limitation can be bypassed by studying the
phenomenon in the interval [0, 2T] under an axial action p(x, t) such that

p(x, t) = p(x, t) on nx [0, T],

p(x, t) = p(x, 2T- t) on nx (T, 2T].

(l4a)

(14b)

In order to take into account the boundary and initial conditions, it is necessary to
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introduce some duality relations between the spaces in which d., h., uo, Uo are defined and
the space of functions u. This can be done by defining some suitable trace operators that
project u on the boundary and allow the required symmetries to be found.

With regards to the boundary conditions, the formula of integration by parts

L«(jg ® u';)" - (pu',)') *U2 dn = Ljg ® u'; * u'z +pu', *U'2 dn

+ [«(jg ® u';)' - PU'I) * U2]~ - [jg ® u'; * U'2]~ (15)

suggests putting the time functions Y.U on the points an. in duality with the functions
obtained from u EU by means of the operators c5:U defined as

c5Tu = (jg ® u")' -pu' on an, x [0, T),

c5!u = - jg ® u" on an2 x [0, T),

(16a)

(l6b)

and putting y:U in duality with the functions obtained by means of the following operators
c5.u:

c5,u = u' on anT x [0, T),

c5 2u = -u on an! x [0, T).

(l7a)

(17b)

Once this has been established, the equivalence of eqn (15), which is useful for dem­
onstrating the variational theorem, can be re-written in the following formal way:

<A*GAu" U2)' +<B*PBu" U2)' +L. <y:U " c5.u2)u;

= <GAu" AU2)1 +<PBUl, BU2)I +L.<c5:U" Y.U2)11,· (18)

With regards to the initial conditions, the formula of integrations by parts

suggests introducing the operators

nu = mu(x, T) on n x t = T.
ITu = mu(x, T)

Equation (19) can be rewritten in the following formal way:

(19)

(20a)

(20b)

On the basis of the results obtained, it is possible to demonstrate the variational
theorem in formal terms.

Theorem. The differential problem consisting of eqns (1)-(4) is assigned. If
p(x, t) = p(x, T - t) Vt E [0, T) then the functions u satisfying the differential problem coincide
with the critical point of the functional

31' (u) = 1/2[<GAu, AU)I + <PBu, BU)t + <MCu, CU)I- <q, u)tJ +L.<y.u-d., c5:U)Il,

- L.<h" c5,u)ll; + <Iou- uo, nU)Il' - <uo, ITu)llI' (22)
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Proof (a) It will be shown that if u satisfies eqns (1)-(4) then the functional ~(u) is
stationary at u. The differential of the functional with respect to a variation '7 assumes the
following form :

J~(u; '7) = Ij2[<GA1/, Au)! +<GAu, A1/). + <PB1/, BU)J

+ <PBu, B1/)J + <MC1/, Cu)! + <MCu, C1/)! - <q, lJ)d

+ L,[<1',u- d" J~)ll,+<1',1/, J:U)IlJ - L,<h"J,IJ)II;

(23)

For the symmetry of G, P, M and using the relations of eqns (18) and (21), the
following can be obtained

~~(u; '7) = <A"'GAu+B"'PBu+C"'MCu-q,'7>J+L,<1',u-d"~~>II.

+ L,<1':U- h" ~,'7)II:+ <Iou - uo, I~IJ)III + <I~u - uo, IT'7) III , (24)

such that ~~(u; '7) = °for every variation '7 when u is a solution of eqns (1), (2), (3), (4),
and therefore a critical point exists at u.

(b) And, vice versa, if the functional is stationary at u then u satisfies eqns (1)-(4).
According to the form that the functional differential assumes in eqn (24) and because the
bilinear form is non-degenerate [property (ii)], it can be directly concluded that if the
differential of eqn (24) is null for every variation IJ then the former term of every bilinear
form must be null, i.e. eqns (1)-(4) are satisfied.o

It can generally be noted that the linear operator is not positive with respect to the
adopted bilinear form so that the stationary point does not necessarily represent an extreme
(minimum or maximum) of the functional.

Essential simplifications are often possible in the expression of~ (u) [eqn (22)]. Usually,
when the fundamental period of free vibration of the structure is much smaller than the
relaxation time of the material, it is reasonable to neglect the inertia forces, (Hoff, 1958).
In this case the functional becomes simpler because the terms involving C*MC and the
initial conditions disappear. Furthermore if u is forced to belong to a subset V 0 ~ V where
V o denotes the space of functions that satisfy the Dirichlet type boundary conditions, the
term related to 1',u-d, is also null. In this last case, Vo is no longer a linear space unless
the Dirichlet conditions are homogeneous.

In conclusion, it can be noted that, as usually occurs in variational formulations, the
functional ~(u) can be used to define the problem in a more general way, closer to the
physical question. In fact, ~(u) can be defined for UE V O~ H 2,!(o. x (0, T))t; a lower and
more natural degree of regularity is consequently required for u that must have only
one continuous spatial derivative, which is equivalent to requiring the continuity of the
displacement field in the column. The data space is also enlarged and the form is defined
for q E V ~ H - 2, - 1(0. x (0, T)), and consequently also for concentrated actions and dis­
continuous or impulsive load history. Similar arguments make it possible to conclude that
a lower regularity with respect to the classical requirements suffices for j,p and m too,

APPLICATION I

In the case of constant actions, the system progresses in time fitting a very regular
curve, which makes the numerical solution using the Ritz classical spectral method, a very
profitable tool. This can be shown by solving an analytically known problem, numerically.
In particular, a simple case solved in closed form by Szyszkowski and Glockner (1985) is
considered. This refers to a column pinned at the ends, where j is a constant, subjected to

tThe form H m,n(0. x (0, T)) denotes the space offunctions defined on 0. x (0, T) for which both the derivatives
with respect to x of order less than or equal to m and the derivatives with respect to time of order less than or
equal to n are on L 2(0. x (0, T)),

$AS 3O:3-C
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an axial action p constant in time and in space (Figure 2). A static analysis is carried out
and the disturbance consists of a geometric imperfection of the axis of the beam described
by the sinusoidal function Uo sin (nxjL), comparable to a lateral distributed action
q(x, t) = puon2jL 2 sin (nxjL) (the sign is not important). The behaviour of the material is
modelled by a three-element model, so that the kernel g(t) is described by the following
expressions:

g(O) = E,; (25a)

(25b)

where E, = E 2 = 30000 MPa and V2 = 1.0 X 106 MPa days.
The numerical solution can be obtained by assuming that an orthonormal series

<Pi(X)l/Jk(t) complete in V o (functions satisfying the Dirichlet boundary conditions) exists.
The approximate problem can be solved in the finite-dimensional subspace W produced by
the terms of the series such that i ~ nand k ~ m. The projection of u(x, t) in such a subspace
has the form u(x, t) = Uik<Pi(X)l/Jk(t) where the repeated indices denote summation, and the
coefficients Uik are the usually scalar product (u, <Pil/Jk)' In this subspace W, the functional
(22) depends on the terms Uik and assumes the following form:

The stationary condition requires the simultaneous annulment of the partial derivatives
and, by means of the positions

can be written as

A,krs = [<GA<Pil/Jb A<Prl/Js)1<PB<Pi l/Jb B<prl/Js)'],

brs = <q, <Prl/Js)1

(27a)

(27b)

(28)

for every r ~ n,s ~ m.
The solution can be provided assuming the following orthonormal sinusoidal series

for the variable x:

(i . inx
<Pi(X) = -yISlTIy i= l, ... ,n (29)

I
L u(x,t)

1
uo(x)=uosin~

L

y

Fig. 2. Imperfect column with three-element model.
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Table 1. Ratio um(t)luo for (a) pipE"" 0.4 and (b) pipE = 0.6
(a) (b)

2 3 4 5 2 3 4 5
Terms Terms Terms Terms Exact Terms Terms Terms Terms Exact

0 1.856 1.685 1.667 1.666 1.666 0 -0.183 2.915 2.454 2.505 2.500
20 2.271 2.264 2.270 2.270 2.270 20 4.853 4.977 5.143 5.122 5.123
40 2.685 2.761 2.765 2.765 2.765 40 9.890 8.526 8.655 8.667 8.665
60 3.100 3.175 3.170 3.170 3.170 60 14.926 13.563 13.434 13.446 13.447
80 3.514 3.507 3.501 3.502 3.502 80 19.963 20.087 19.921 19.900 19.900

100 3.929 3.757 3.774 3.773 3.773 100 25.000 28.098 28.559 28.609 28.612

and the normalized Legendre series for the variable t:

I
I/Jo(t) = jT k = 0,

(ik 1 I dk
Z

I/Jk(t) =..J-r k!2k d:l«2tjT) -1) k= l, ... ,n. (30)

It must be noted that the particular form of q and the orthogonality of the (/J;(x) and
of their derivatives makes all the coefficients hrs with r -# I and Aikrs with i -# r null.

It can be shown that the terms of the normalized Legendre series preserve their
orthogonality also with respect to the convolution bilinear form, therefore the terms
<I/Jb I/Js>l = I/Jk * I/Js are null if k -# s, even if the composition of functions with the same
index no longer provide their norm. In particular the bilinear form provides <I/Jb I/Js>l =
Wk * Ws = <5ks ( l)k where 15k" = Kronecker delta (in this expression, the repeated index k
does not denote a summation).

In Table 1, the amplification of the disturbance is reported by means of the ratio
between the maximum displacement um(t) and the amplitude of the disturbance Uo obtained
for two meaningful values of the load. The ratio between axial load P and the Euler critical
load PE equal to 0.4 is examined in the former case (column with asymptotic bounded
displacement) and the ratio 0.6 in the latter case (column with asymptotic unbounded
displacement). The solutions obtained with the first terms of the Legendre series are
reported.

APPLICATION 2

The second application shows the effect of axial load histories variable and finite in
time. This problem is not developed in the literature and cannot be approached in a useful
manner by using the Laplace transform method. The example intends to underline only
some features of this complex problem.

The column of the previous application is considered and the axial load history is
described by the following function:

() . nt T1
P x, t = Pm sm - on [O,n'J,

nT
(31a)

p(x, t) = 0 on (nT, C()), (3Ib)

where T= vzj(E1+Ez) denotes the characteristic relaxation time (g(t+l)jg(t) = e- I ), Pm
is the maximum axial load and n is an integer.
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Fig. 3. Ratio urn/UO for different load durations.

Figure 3 shows the ratio um(t)/uo for loads with different durations (n = 1,2,4,6)
assuming Pm/PE = 0.5. This value of axial action represents the critical viscous load in the
case of constant load (Szyszkowski and Glockner, 1985) and identifies the boundary between
bounded and unbounded asymptotic behaviour. It can be noted that the load duration
notably affects the maximum value of displacement and this may be acceptable if the period
of loading is sufficiently brief.

Figure 4 shows the ratio um(t)/uo for n = 4 and for different values of the ratio Pm/PE
(0.3, 0.4, 0.5, 0.6). The dotted curve describes the deformation of an elastic column with
an elastic modulus equal to the initial modulus E[ and Pm/PE = 0.5. It is interesting to
observe that the maximum displacement value occurs after the application of the maximum
load Pm and this delay is scarcely affected by the axial load. As expected, the correlation
between displacements and axial load is non-linear.

This simple example shows that this problem presents interesting features and the
authors believe that a better understanding requires a major investigation into the work
developed in this demonstrative application.

CONCLUSIONS

The purpose of this study was to provide a variational formulation of the problem of
viscoelastic columns subjected to axial loads, as an alternative to the classical Euler form,
whose solution is often difficult.

This was achieved by adopting a convolution bilinear form instead of the canonic
bilinear form with respect to which the operator of the problem is not symmetric. The
convolution form leads to a functional that has a stationary point (not necessarily extreme)
at the solution of the problem in the classical form. This functional was obtained under
very general boundary and initial conditions.

Consequently it has been possible to extend the usual advantages that make the
variational formulation preferable over the classical differential formulation, for this type
of problem; in fact it is possible to operate on larger and more physically motivated
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Fig. 4. Ratio urn/UO for different axial loads.
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functional spaces and to use the classical methods of approximation of the calculus of
variations, rarely applied to viscoelastic problems.

In a first numerical application the effectiveness of the classical Ritz spectral method
was demonstrated in the case of constant axial actions by numerically solving a problem
whose analytical solution is known. The effectiveness of this method is substantially due to
the regularity of the function describing the progress in time of the system. A second
application shows the behaviour of viscoelastic columns subjected to a finite load history;
this problem possesses interesting features and cannot be approached by the classic Laplace
transform method.
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